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Quasisoliton solutions in one-dimensional anharmonic 
lattices: I. Influence of the shape of the pair potential 

M K Alit and R L SomorjaiS 
Division of Chemistry, National Research Council of Canada, Ottawa, Ontario, Canada 
K1A OR6 

Received 6 February 1979, in final form 17 April 1979 

Abstract. We have investigated the influence of the shape of pair potentials on the existence 
and properties of soliton-like (quasisoliton) solutions in periodic one-dimensional lattices. 
The classical equations of motion were solved numerically for chains of ‘atoms’ with 
nearest-neighbour interactions. The class of pair potentials studied has the form V,(r)E 
exp(-26r)-2uexp(-br/u), u>O. For all U’S tested ( U =  1, 5 ,  10, 15), quasisoliton 
solutions were observed to propagate with essentially constant velocity and survived many 
collisions. Our most interesting conclusion is that long-lived quasisoliton solutions 
apparently exist for most systems with realistic anharmonic potentials. The conditions these 
potentials have to satisfy (a sufficiently steep, short-range repulsive part and an asymmetric 
( V ( r  + ro) # V(r - ro), for all ro) overall shape) are weak. The nature of the long-range part 
is unimportant. The initial conditions are more decisive; they determine the nature and 
behaviour of the quasisolitons created. Integrability of the Hamiltonian does not seem to be 
necessary for the existence of quasisolitons. 

1. Introduction 

In recent years interest has been focusing on finding soliton solutions of both integrable 
and non-integrable nonlinear differential equations (see Scott et a1 1973, Makhankov 
1978, Faddeev and Korepin 1978, Calogero and Degasperis 1976, 1977, Kaup and 
Newel1 1978, and many others that can be traced through these). The soliton solutions 
of integrable systems retain their identity (Scott etal1973), i.e. their widths, amplitudes 
and velocities remain invariant after collisions with other solitons (except for a possible 
shift in position or phase). Regarded as particles, they collide elastically and can be 
thought of as possessing infinite lifetimes. In contrast, solitons corresponding to 
non-integrable systems of equations can collide inelastically (Makhankov 1978), 
resulting in finite lifetimes. Although integrable systems of equations play an important 
role in mathematics and physics, it seems to be of great practical importance to find 
criteria that would help in identifying and characterising soliton-like (to be referred to 
as quasisoliton) solutions of arbitrary non-integrable systems of equations. For most 
realistic physical situations, the mathematical description of interactions of ‘particles’ 
with each other and with their environment is in terms of non-integrable differential 
equations (equations of motion). Quasisoliton solutions of such equations, if they exist, 
would have interesting features and important physical consequences, especially if they 
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had lifetimes that were much longer than the longest linear (harmonic) relaxation time 
of the physical system. 

Qualitative existence criteria for quasisoliton solutions that do not require the 
explicit solution of the equations (such as the Liapunov functions in the stability theory 
of differential equations) would, of course, be ideal. In the absence of any such 
criterion, numerical studies of the dependence of solutions on both local and global 
features of the system are the alternative. Candidates for such features include mass 
and/or force defects in an otherwise uniform chain, type, critical magnitude and range 
of the initial excitation, the number of interacting neighbours of a given unit in the 
chain, the nature of the boundary conditions, the form and range of both repulsive and 
attractive parts of the pair potential, the dimensionality of the system, etc. Many of 
these points have been considered in the literature (e.g. Currie et a1 1977, Hasenfratz 
and Klein 1977); however, they all start with an integrable nonlinear partial differential 
equation (e.g. sine-Gordon or 44-field equation) which is known to have soliton 
solution, and 'perturb' it by discretisation or otherwise. In contrast, in this work we 
consider directly anharmonic one-dimensional periodic chains with nearest-neighbour 
interactions, and we study numerically their quasisoliton solutions. The Hamiltonians 
we consider are not known to be integrable, and so there is no guarantee that 
quasisoliton solutions exist. Their parametrisation enables us to concentrate mainly on 
the importance of the shape of the pair potential for soliton-like behaviour. 

2. The Hamiltonians 

We consider a class of Hamiltonians H, of an N-particle one-dimensional chain with 
nearest-neighbour interactions and unit masses: 

V,(r) = [A/(2a - l)][exp(-2br) - 2 a  exp(-brla)], (2) 

(3) 

where pn and yn  are the momentum and the displacement from equilibrium of the nth 
particle, respectively; A, b and a are constants (for computational convenience (see 
below) we chose a to be an integer 31). Plots of the potential V, against r, with 
b = 2.828 and A = 1/2b, are shown in figure 1. The curves 1 , 2 , 3  and 4 correspond to 
a = 1, 5 ,  10 and 15 respectively. V,(r) has its minimum at r = 0: V,(O) = -A. When 
br > 0 and a = 0, Vo(r) is closely related to the well-known exponential potential (Toda 
1976); for (T = 1, Vl(r) is the ubiquitous Morse potential. For larger values of a ,  V,(r) 
becomes longer in range (e.g. as measured by the value of the inflection point, 
d2Vu/dr21,=,inn = 0, rinflCCa2 log a). The curvature of V,(r) close to the equilibrium 
point is inversely proportional to a :  d2V,/dr21r=o = 2b2A/v. Thus the larger a is, the 
flatter the potential. 

rn = yn - ~ " - 1 ,  

The broken curve in figure 1 is a plot of VHB(r*)/2bVHB(req), where 

r* = r f req, req = 1.836 959 A, 12040 4014 11.2365 
r* ' VHBk*) = r*12 - r*10 - 

VHB(rea) = -7.136 242 kcal mol-'. 
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Figure 1. Plot of the potential V,(r) against r, with b = 2.828 and A = 1/26. Curves 1 , 2 , 3  
and 4 correspond to (r = 1,5,10 and 15. The broken curve is the normalised V,, potential 
(see text). 

The factor 1/2bVHB(r,q) normalises vHB(r*) so that the latter coincides with V,(r) at 
r = 0 (i.e. r* = re,). The parameters in VHB(r*) correspond to a representative H..-O 
hydrogen-bond potential (Momany et a1 1974), to which we have added a typical 
electrostatic term. Note that the H-bond so modified is hardly distinguishable from 
V,(r) for r < 0, although no value of (T can simulate it for all values of r > 0. 

The classical equations of motion for the chain are given by 

Y,, = aH,/apn (4) 

p,, = -aH,/ay,. ( 5 )  

and 

Using equations (1)-(5) gives 

yn = [2bA/(2(~ - l)l[exp(-2brfl) - exp(-br,,/a) - e~p(-2br,,~) + exp(-br,+l/a)]. 

For the sake of computational efficiency we perform the change of variable 
(6) 

zn = exp(-byn/a), (7 1 
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which transforms (6) into 

Z,, =Z’,/Z,, - [2Ab2/v(2v-  1) ]Zf l (4Zn”-4n-4~~i  +4,,+1), (8) 
where 4,, = Z,,/Z,,-,.  

We have not been able to find an analytical solution of (6) (or of (8)). However, 
analytical solutions of some low-order continuum limit approximations to these dis- 
crete equations may exist and could reveal essential features. Thus we consider the 
continuum limits of equation (6) in order to determine whether there exist conditions 
for which soliton-like solutions may be expected. 

3. Continuum limit approximation 

Let Yn = y(nh, t ) .  Using the raising and lowering operators defined by (Toda 1976) 

D:ffl =exp(*ala,)f,, =ffl*l, (9) 

equation (6) becomes 

y, = [ 2 b A / ( 2 ~  - l)l[exp(-2byfl)D, exp(2by,,) -exp(-by,,/u)D, exp(by,,/u) 

-exp(2byfl)D; exp(-2byfl) +exp(byn/u)Di exp(-by,lu)]. (10) 

Expanding equation (10) in a Taylor series and retaining terms through the fourth 
derivative, we obtain 

a y  a2y  p a4y 6 b 2 ( 4 a 2 + 2 ~ + 1 )  a 2 y  a y  
3 at2 - - (1 + “&T+ z[ z+ U 2 -(-)219 ax2 ax 

(Y = - ( 2 ~  + 1) / (2~A)”* ,  p = u/2b2A, x = (2b2A/~)- ’ /2n .  (11) 

It is convenient to change to the variables (Cercignani 1977) 
3 t=E(X-f ) ,  r = E  pt, y = E M ,  

a l a r  = p ~ ~ a / a ~  - Eala[, a /ax = Eala(, 

where E is an ‘ordering’ parameter. Using the definitions in equation (12) reduces (11) 
to 

,au a2u  p ,a4u 6 b 2 ( 4 a 2 + 2 ~ +  1) ,a2u au 
a t  a t  E 7(-)’]. (13) 2 - ( Y E  --+- E -+ ’ [ U 

2 7a2u a2u  p E -?-2pE5-- 
a7 arae a t  a t 2  12 a t 4  

Neglecting terms of order higher than E’ in equation (13), we obtain 

a u l a 7  + PV a u l a 6  + h a3v/a l3  = Q, (14) 

v =aula(, /.L = a /2P = -b2A(2g + ~ ) / u ( ~ u A ) ” ’ .  (15) 

Equation (14) is one form of the Korteweg-deVries (K-dV) equation which is known to 
be integrable and supports solitons. A soliton solution of (14) is given (Cercignani 
1977) by 

where 

v = (3c/p) sech2[&c(t - C T ) ] ,  

where c is a constant. Thus if the discrete problem (6 )  is well represented by (1 1) for 
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some A, 6, U, then this continuum limit of (6) suggests that the discrete lattice may well 
support at least soliton-like solutions. Of course, there is no a priori assurance that 
representing the discrete problem more accurately (by going to even higher-order 
continuum equations) will preserve the soliton-supporting features. Thus a direct study 
of the discrete lattice was undertaken, based on the expectation that soliton-like 
solutions will be found for physically reasonable A, b, U. 

4. Computations and results 

Here we present the method used to solve equation (6) via equation (8), and the results 
of the computations. The set of differential equations (8), with periodic boundary 
conditions 

Z N + k  = zk, i.e. rN+k = rk, Y N + k  = Yk, 
where N is the total number of particles in the chain, was solved using a fourth-order 
explicit Runge-Kutta scheme with fixed step size h (Abramowitz and Stegun 1965, 
equation 25.5.20). The step size ranged from 0.0005 to 0.01 time units in order to 
maintain conservation of the total energy E to at least seven significant figures during 
the numerical run. To achieve this accuracy, smaller step sizes were needed for larger E 
(U constant) or for larger U (E constant). The initial values (at t = 0) of yn and y,, (and 
hence of Z,, and Z,,) were chosen to be those corresponding to a Toda soliton placed at 
the N/2 lattice site. Their explicit forms at t = 0 are 

ri(0) = yj(0) - Y ~ - ~ ( O )  = A  ln(1 + w 2  sech2 x i ) ,  

i j ( 0 )  = yj(0) - yj-l(0) = 2Aw2 exp(ri) tanh xi sech' xi, 
(16) 

(17) 
with 

A = * l ,  w = db sinh(K), K =constant 

and 

xi  = K (N/2 -j), j = 1 , 2  , . . . ,  N. 

In figures 2-5(a) we show plots of f j  as functions of time, where the force at site j is 

f i  = [exp(-2brj) -exp(-brj/a)]/(2a - l ) ,  Vi. (18) 

Figure 5 ( b )  is a plot of the velocity dyj/dt, in the centre-of-mass coordinate system of the 
chain. The relevant parameters and some results corresponding to the figures are 
collected in table 1. Note that except for the Morse case, figure 2, all initial velocities 
were set to zero. In figure 2, yi was chosen according to equation (17). 

Some comments are in order on the definition and/or meaning of the displayed 
quantities. N, U, E, f i  have already been defined and K is a constant that governs the 
amplitude (and hence the total energy) of the initial excitation. The parameter A 
determines whether on excitation the separation between two adjacent masses of the 
chain increases (A = 1, dilatation) or decreases (A = -1, compression). At equilibrium, 
rj = 0. f""" is the maximum amplitude of the local forcefi at t = 0, attained anywhere in 
the chain. For A = -1, this is at j = N/2 (i.e. where the excitation occurred). For A = 1, 
it is at j = N. The soliton amplitudes f i ,  yj in figures 2-5 were scaled differently, merely 
for convenience in plotting. Note that for figure 5 ( b )  the maximum modulus of the 
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Figure 2. Plot of f , ( t )  (equation (22)) as a function of t and 1. See table 1 for values of the 
parameters. The broken lines indicate the approximate positions of the two small pulses. 

velocity amplitude is recorded; maxlyil was attained at t = 1.676. The penultimate 
column of table 1 contains the final time tan to which the equations of motion were 
integrated out. The last column lists the longest finite linear relaxation time T~ of the 
chain. This was obtained by retaining only the linear term in the equations of motion for 
the chain, equation (6). Then we have 

y = (2b2A/u)Dy, 

where 0 is the N x N symmetric matrix with non-vanishing matrix elements dji = -2, 
d . .  / . 1 + 1  = dlVN = 1, Vi. The eigenvalues pk of (2b2A/u)D are (Bjorck and Golub 1977) 

p k  = -(4b2A/u)[l - c o s ( ~ T ~ / N ) ] ,  k = 0 , 1 ,  . . . ,  N - 1 ,  
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Figure 3. Plots of f i ( t )  against t and j .  See table 1 for values of the parameters. ( a )  
corresponds to cr = 5, ( b )  to cr = 10. 

and the linear relaxation times are defined by ?k = 1/IPk). Apart from r0, which 
corresponds to the relaxation time of the chain as a whole, the longest finite value is 
given by q. Its comparison with t f i ,  enables us to state whether the duration of soliton 
behaviour can be considered as meaningfully long. In tables 2 and 3, characteristics of 
the quasisoliton solutions are presented. Table 2 contains results for the Morse 
potential (figure 2). The initial conditions lead to the creation of three quasisolitons. 
Their velocities, initial directions of travelling, the total number of pair collisions in tfi,,, 
and the times between successive collisions are listed. In table 3 we collect the results 
for the other potentials (figures 3-5). All five cases are characterised by the creation of a 
soliton pair, members of which travel with identical velocities but in opposite directions. 
The velocities, times between collisions and the total number of collisions are recorded. 
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Figure 4. Plots of f,(t) against t and 1. ( a )  corresponds to A = -1, ( b )  to A = 1. For other 
parameters see table 1 .  

All computations were carried out in double precision on IBM computers. The 
shorter runs were done on a 360167, the long ones on the 37013031. 

5. Discussion 

Quasisoliton solutions should be quasi stable. That is, the pulse(s) associated with a 
given total energy and momentum should propagate without appreciable decay. As a 
consequence, the energy (or charge or whatever physical property of interest is ‘carried’ 
by the pulse) would take relatively long times to dissipate into the surroundings. To be 
of interest, these decay times should be comparable to, or much longer than, the longest 
relaxation time of the linearised system. Inspection of the figures and table 1 indicates 
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Figure 5. (a)  Plot of f i ( t )  against f and j .  U = 5,  other parameters in table 1. (6) Plot of yi(f) 
against f and j .  U = 5, other parameters in table 1. This is the velocity plot corresponding to 
(a). 

Table 1. Input parameters, identification and some results of the various V, considered. 

Case no. 
Figure 
no. 

Quantity 
plotted 

h 
fi 
fi 
fi 
f i  
fi 
Yi 

Input parameters 
N h  U K  

90 -1 1 1.0 
40 -1 5 1.93711 
40 -1 10 2.12316 
40 -1 15 2.22861 
40 +1 15 1.0 
40 +1 5 1.5 
40 +1 5 1.5 

E 

-10.9582 
15.4137 
15.4137 
15.4137 
15.4137 

743.906 
743.906 

f"""(t=O) tAn 

19.16 404 
125.5 107 
126.2 3006 
126.5 91 
127.3 887 

4249 168 
27.03t 168 

71 

7238 
71.80 

143.6 
215.4 
215.4 
71.80 
71.80 

~~~ ~ 

i. Maximum modulus of amplitude for y,, attained at f = 1.676 
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Table 2. Computed characteristics of the quasisoliton solutions for the D = 1 (Morse 
potential) case. 

Soliton 
velocity Soliton- Time No. of 

Soliton Direction (site/unit soliton between collisions 
Case no. no. of travel time) collision collisions in ffin 

~ 

1 Forward 4.11 1-2 44.78 9 
1 2 Forward 2.10 2-3 19.52 20 

3 Backward 2.5 1 1-3 13.60 29 

Table 3. Computed characteristics of quasisoliton solutions for the potentials tested. 

Soliton 
velocity Time No. of 
(site/unit between collisions 

Case no. time) collisions in ifin 

2 3.68 10.87 9 
3 3.31 12.08 ? S O  
4 3.30 12.12 7 
S 3.11 12.86 68 
6 4.25 9.41 17 

that we have carried out our integrations to satisfy this criterion. In all cases the pulses 
survive and propagate essentially unchanged, even for the two weakest solitions of the 
Morse case. This is the more remarkable since during these integrations there were 
from 7 to 250 pair collisions suffered by the various solitons (tables 2 and 3). Our 
potentials V, can be considered as modifications of the exponential (Toda) potential 
Vo, which is integrable and has soliton solutions (Toda 1976). Since we observed 
soliton-like solutions for all U values we tested, and for a wide range of total (excitation) 
energies, there was the possibility that the class of Hamiltonians H, is integrable. (The 
continuum limit K-dV equation for the velocities was particularly suggestive.) To 
check this, we repeated the run for case 3 (figure 3 ( b ) )  with identical initial conditions, 
except for yl(0) which was changed to y ;  (0) = yl(0)  + Thus initially the two 
trajectoriesin the 80-dimensional phase space were separated by low6, i.e. D(0) = 
with 

N 

D2(t)  = C [ (yi( t )  - Y :  ( t ) )*  + (pi(t) - p i  ( t ) ) ’ ] ,  
i=1  

where p , ( t )  is the momentum of particle i at 6. 
If the system were integrable, then two trajectories initially very close together in 

phase space would separate linearly as the system evolves. For a non-integrable system, 
this separation would eventually be exponential (Casati and Ford 1975, 1976). In our 
test run, log D(6) against t gives a linear plot, i.e. D(t )  increases exponentially, and thus 
this particular trajectory pair originates in a stochastic region of phase space. This is 
suggestive of non-integrability. (A more definite statement cannot be made in view of 
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some evidence (Benettin et a1 1977) that local exponential divergence does not 
necessarily imply global instability.?) 

The possibility of non-integrability is, in fact, a much more interesting result than if 
we could have shown integrability (the latter is a far more arduous task, since numerical 
results can only be suggestive and the ultimate proof has to be analytic). If the system 
were in fact non-integrable, then it is remarkable that the creation and stability of 
quasisolitons may not even requii.: that the initial conditions correspond to a non- 
stochastic region of phase space! This suggests that quasisoliton existence-stability 
cannot be related in a simple fashion to non-ergodicity. 

A closer scrutiny of the figures reveals that the quasisolitons possess more complex 
temporal behaviour than true solitons, even when far away from the collision regions. 
The most striking aspect is the rather regular waxing and waning of the force ampli- 
tudes. The smaller amplitudes reflect expansion ( r  > 0), while the larger correspond to 
contraction ( r  < 0) of the chain. This behaviour is qualitatively similar, whether initially 
the chain was stretched ( r  > 0, A = 1) or compressed ( r  < 0, A = -1). Interestingly, the 
amplitudes of the velocities$ yi are much more nearly constant in time (compare figures 
5(a) and (6)). This is supported by the continuum limit analysis which indicates the 
possibility of soliton-like behaviour for the velocities. 

Similarly to true solitons, the quasisolitons suffer displacement upon collision, in our 
examples usually by about a lattice separation. However, after collision, the quasisoli- 
tons seem to accelerate for a time, then slow down again to the velocity they had before 
collision. As in the case of true solitons, quasisolitons with larger velocities have, on the 
average, larger force amplitudes. 

The most interesting finding of this work is that under very weak restrictions on the 
shape of the pair potentials, reasonably long-lived quasisoliton solutions can exist in 
one-dimensional chains of particles with nearest-neighbour interactions. Qualitatively, 
what seems to be needed is a sufficiently steep repulsive part and some anharmonicity 
(nonlinearity) that makes the potential asymmetric (i.e. there is no xo such that 
V(xo - x)  = V ( X O  + x)). (We have integrated the equations of motion for symmetric 
potentials of the forms V ( x )  = xZm, m 3 2, and lost the initial pulse very quickly and 
irretrievably.) A very recent finding of Valkering (1978) supports this idea. He proved 
that the necessary conditions a pair potential has to satisfy in order for periodic 
permanent waves to exist in the chain are that it has vertical and horizontal asymptotes 
and an inflection point. It is important to emphasise that the existence of quasisoliton 
solutions has not been proven: this would need proof that two or more pulses with 
different velocities are stable under small perturbations and, in particular, survive 
interaction (collisions). Our numerical results indicate that this may well be the case. 

In order to eliminate the possibility that quasisoliton solutions are peculiar to V ,  we 
have also solved the equations of motion for VHe (broken curve in figure 1). Again, we 
found that quasisoliton solutions exist. 

All these results point to the conclusion that, given physically reasonable pair 
potentials, it is the initial conditions that really determine whether the excitation leads 
to quasisoliton solutions, and if it does, how many there are and how they behave. It is 
not difficult to create quasisolitons. What is more difficult is to produce them with 
specific properties (e.g. it is not straightforward to choose those initial conditions that 

i We thank one of the referees for bringing this important paper to our attention. 
$ This study was essentially completed when we became aware of two earlier uses (Dancz and Rice 1977, 
Hardy and Karo 1977) of the Morse (a = 1) potential in connection with soliton solutions of equations of 
motion. Based on our velocity plot, we reach the same conclusion as Hardy and Karo. 
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would create a single quasisoliton with a particular velocity, propagating in a prescribed 
direction). Note that the initial conditions do not have to be as simple as the ones we 
used in most of our tests. In fact, five equal pulses placed at sites 8, 16,24, 32 and 40 
initially, with zero initial velocities, produce five quasisoliton pairs that remain equally 
spaced and recur periodically with essentially undiminished amplitudes. 

None of our runs was long enough to tell us what the lifetimes of our quasisolitons 
might be. Assuming that the finite lifetime of quasisolitons is due to coupling with 
phonons of the lattice, one could estimate numerically how much of the soliton energy 
‘leaks’ into the lattice as the system evolves. However, this would involve the dubious 
and poorly defined separation at any given time of sites into two classes: soliton-bearing 
and phonon-bearing. If this could be done (e.g. if one could exclude times when 
soliton-soliton interaction is large), then one could extrapolate to times when the 
average phonon energies are comparable with the average soliton energies, i.e. when 
one could not distinguish between solitons and phonons. These times could be 
considered as measures of quasisoliton lifetimes. Even then, the possibility of recur- 
rence phenomena (characteristic of many nonlinear systems with soliton solutions) 
makes the value and reliability of extrapolation problematic. 

A more promising approach is to use singular perturbation techniques (e.g. Kaup 
and Newel1 1978, Weiland ef a1 1977, Karpman 1978), starting with the Toda solution 
(V,) as the unperturbed system, and deriving differential equations for the time 
dependence of both soliton amplitudes and velocities. Solutions of these would help us 
elucidate the complex temporal behaviour of quasisolitons analytically or semi-analy- 
tically, and would provide quantitative lifetime estimates. Such an analysis is in 
progress and will be reported. 

6. Addendum 

Since this work was submitted, a paper (Rolfe et a1 1979) has appeared which, with its 
different aims, complements our work rather nicely. The authors have studied large- 
amplitude motion on nearest-neighbour chains of Morse and Lennard-Jones oscil- 
lators, with both fixed and cyclic boundary conditions. They find that the shape and 
behaviour of the Morse or Lennard-Jones solitons is very similar to that of the Toda 
solitons. Furthermore, they studied the effect of mass impurities on quasisoliton 
stability for different mass ratios. The point of overlap with our study is their conclusion 
(stated somewhat differently) about some of the necessary conditions the pair potentials 
have to satisfy in order to be soliton-bearing. We agree on these. However, their claim 
that the Morse and Lennard-Jones lattices support only compressional solitons is in 
disagreement with our findings. This discrepancy has to be attributed to different 
boundary conditions; we have always used cyclic boundary conditions, while their 
arguments seem to be based on free end boundary conditions. 
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